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Abstract

Recent molecular level studies that compare different classes
of disease conditions produce labeled gene expression data. We
examine scoring methods that are useful in mining such gene
expression data for genes that have biological relevance to the
condition studied. Relevance information isuseful in identifying
genesdriving the biological process, in selecting small subsets of
genes with diagnostic potential, and in better understanding the
condition studied and its relationship to known or hypothesized
biochemical pathways. We present the scoring methods; de-
scribe a process for computing the corresponding p-values; and
finally, present results from application to actual cancer gene ex-
pression data. These include applying classification techniques
employing varying relevance based selected sets of genes.

1 Introduction

Recent studies on molecular level classification of cancer cells pro-
duced remarkable results, strongly indicating the usability of gene ex-
pression assay's as diagnostic tools. %78 In such studies classified gene
expression data is collected and analyzed. Such data consists of tis-
sue samples for which the expression level s of thousands of geneswere
measured. Thetissues ares|abeled as belonging to certain classes (such
as tumor or normal, particular kinds of tumors, phase, differentiation
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stage, etc). Some of the genes measured play a major role in the pro-
cesses that underly the differences between the classes or are majorly
effected by the differences. Such genes are highly relevant to the stud-
ied phenomenon. On the other hand, the expression levels of many
other genes may be irrelevant to the distinction between tissue classes.

Attaching a measure of relevance to each gene in such studies is
useful in several ways. Seeking small setsof genesthat can jointly serve
as a classifier and as a basis for the development of diagnostic assays
one can choose amongst the more informative genes found in prelim-
inary more comprehensive studies. Highly informative genes that are
parts of known biochemical pathways give insight into the processes
that underly the differences between classes. Highly informative genes
(or ESTs) of unknown function suggest new research directions.

In this paper we examine several ways of scoring genes for rel-
evance. Assume that we are given a data set D, consisting of pairs
(z;,1;), fori = 1,..., M. Each sample z; is a vector in R" that de-
scribesthe expression valuesof N genes/clones. Thelabel /; associated
with x; is either — or + (for simplicity, we focus on two-label classi-
fications). We examine four scores for genes. The first, TNoM, is a
combinatorially derived score that depends only on the vector of class

labels that results from putting the expression levels 2:1(g), . . ., 2, (9)
in ascending order and permuting /4, . . ., [, accordingly. The second,

Info, is an information-theoretic score that aso depends only on that
order. The third score is based on logistic regression and depends on
actual expression values. Finally, we also briefly describe Gaussian
based scores. ?

For each one of these scores we start by presenting some underly-
ing theory. We then turn to explaining the process of computing the
scores. Numerical values for relevance scores mean alot more if they
come with statistical significance figures. In fact, comparison across
sets of differing characteristics is essentially impossible without a uni-
form figure of merit. Section 2.4 addresses issues related to statistical
benchmarking of relevance scores. Section 4 elaborates on the impor-
tance of statistical benchmarking for the analysis of data with missing
values. Finally, we present results from applying these methods to ac-
tual gene expression data sets. We work with a colon cancer data set
2, aLeukemia data set” and a Lymphoma data set'. We apply scor-



ing methods to assess the abundance of informative genes in the data.
We also test the performance of the different methods in classification
problems.

2 Rank Based Scoring Methods

2.1 TNoM Score

Ben-Dor et al ? describe the TNoM score (Threshold Number of Mis-
classification). It is based on searching for a simple rule that uses a
given expression level, for the given gene, to predict the label of an un-
known. Formally, aruleis defined by two parametersa, and b. The pre-
dicted classissimply sign(ax + b). (Note that since only the sign of the
linear expression matters, we can limit our attentiontoa € {—1,+1}.)
A natural approach isto choose the values of a and b to minimize the
number of errors:

Err(a,b ] g) = Z 1{l; #sign(a - z;[g] + b)},

where z;[g] is the expression value of gene ¢ in the i’th sample. We
can find the best values by exhaustively trying al 2(m + 1) possible
rules. (Attention is limited to threshold values that are mid-way points
between actual expression values.) The TNoM score of ageneissimply
defined as:

TNoM((g) = rﬁubn Err(a,b| g),

the number of errors made by the best rule. The intuition is that this
number reflects the quality of decisions made based solely on the ex-
pression levels of this gene.

2.2 Mutual Information Score

A shortcoming of the TNoM scoreisthat it provides partia information
about the quality of the predictions made by the best rule. Thus, for
example, TNoM does not distinguish a rule that makes k£ one-sided
errors (e.g., al the errors are tissues of class + that are predicted as
—) and arule that makes k /2 errors of thefirst kind and k/2 error the
second kind. This distinction is important, since the rule that makes



only one-sided errors is performing quite badly in the cases that are
above (or below) the threshold. In this case, we would expect the rule
to have less confidence in the predictions it makes on this side of the
threshold.

To make such finer distinctions, we'd like to measure the sample
label information provided by a thresholded gene expression vector.
For this purpose, we use the information-theoretic notion of mutual
information®. Let X and Y be two random variables, and let P(X,Y)
be their joint distribution. The mutual information between X and Y is
defined as

I(X;Y) = H(Y) - HY | X),

where H(Y) = E[—log P(Y)]and H(Y | X) = E[-log P(Y | X)]
are the entropy of Y and the conditional entropy of Y given X, respec-
tively. The mutual information can be interpreted as the number of bits
we save in compressing values of Y if both the sender and the receiver
of the compressed message know the value of X.5

In our setting, we measure the mutual information between labels
and expression values using the empirical distribution induced by ¢ and
a threshold as follows. For a € {—1,+1} and any b set t,,(z) =
sign(ax + b). For appropriate [ and x let M (I, x) be the number of
samplesin D inwhich l; = [ and t,,(x[g]) = . We then define the
empirical distribution Pp ,: Pp,(l,x) = M(l,z)/m. We have thus
defined two jointly distributed random variables L and X, , ;. To eval-
uate a choice of a and b, we compute the mutual information for these
variables.

We note that for comparing different genes and thresholds, we can
use the conditional entropy term, H(L | X, ,;), since the other term,
H(L), is the same for al genes we compare. Thus, to find the most
informative threshold of a gene g, we want to find the parameters that
minimize H(L | X;,05):

Info(g) = min H(L | X))

As with the TNoM score, we find the information score of a gene by
exhaustively searching over all possible 2(m + 1) linear decision rules.



2.3 Logarithmic Loss

We now discuss a different derivation of the Info score. Suppose we
want to predict alabel given the expression value of g. One way to do
thisisto estimate the probability of labels given the expression level of
g. That is, we seek afunction f(I | z) that represents our estimate of
P(L =1| X, = x), where L denotes the sample label and X, the ex-
pression level of gene g. Usually, we determine a parametric family of
functions. The vector parameterization isrealized by denoting the fam-
ily member determined by 6 as f(I | = : #). To evaluate and compare
different parameter settings we define the logloss function:

16| L,X,) = 5" ~logf (i | lg] : 0).

7

Observe that —1I(6 | L, X,) is the logarithm of the probability of ob-
taining the observed labeling on the measured X, according to the
model dictated by #. Thus, minimizing the logloss function is equiva-
lent to maximizing the likelihood of 6.

The choice of the parametric family determines the type of predic-
tions we can make. One simple family of predictors employs linear
thresholds:

p sign(ax +b) =+
ful 2 a,b,p,q) = { oot
and fi(— |z :a,b,p,q) =1— fi(+ |z :a,b,p,q). Thispredictor uses
one coin (p) for labels when = is above the threshold, and another (¢)
when z is below the threshold.
For this parameterized family, the logloss is related to the condi-
tional entropy:

Proposition 2.1  If we usethe parameterized family f,(l | z : a, b, p, q),
then

H(L| Xgup) = r%iqn I(a,b,p,q: L, X,)

and consequently Info(g) = ming ., 4 U(a, b,p, q | L, X,).



2.4 Digtributionsand p-Values

When analyzing actual gene expression data we do encounter many
genes that are strongly indicative of the class of samples. One way to
evaluate the significance of such resultsisto test them against random
data. More explicitly: we want to estimate the probability of a gene
scoring better than some fixed level s in randomly labeled data. This
number isthe p-value corresponding to the scoring method in effect and
the given level s. Geneswith very low p-values are very rarein random
data and their relevance to the studied phenomenon is therefore likely
to have biological, mechanistic or protocol reasons. Genes with low
p-values for which the latter two options can be ruled out are interest-
ing subjects for further investigation and are expected to give deeper
insight.

Let {—, +}(P) denote all vectors with n '—' entriesand p '+' en-
tries (the normal/cancer semantic is one possible interpretation). Let u
be a vector of labels. Also let g be a vector of gene expression values.
A scoring method S (e.g., TNoM, or Info) is afunction that takes g
and « and returns the score of ¢ with respect to labeling u.

Let U, bearandom vector drawn uniformly over {—, +}("?). The
p-value of ascore level s isthen

pVal(s: g,n,p) = Prob(S(g, U,,) < s). (1)

Note that since U, , is uniformly drawn, the order of expression
valuesin g does not change the p-value of scores. Thus, we can assume,
without |oss of generality, that the valuesin g appear in ascending order.
Furthermore, note that both the TNoM score and the Info score are
insensitiveto the actual distance between consecutive expression values
of the gene. Thus, when we examine the p-value these scores, we do
not need to examine the specifics of g.

The combinatorial character of TNoM makes it amenable to rigor-
ous calculations. Ben-Dor et al ® develop a recursive procedure that
computes the exact distribution of TNoM scoresin {—, +}(™?). Dueto
space consideration we do not repeat the details here. Roughly speak-
ing, the procedure estimates the number of permutationsin {—, +} ™)
for which the TNoM score is exactly £. This is developed into a re-
cursive formulathat involves the number of labelsin {—, +}™~') and
{—, +}»=1) with TNoM score k and k — 1.



The analysis of Ben-Dor et al does not directly extend for com-
puting p-values for other scores, such as the Info score. A seem-
ingly simplealternativeisto use stochastic simulationsfor evaluating p-
values. Such a procedure generates random samples from {—, +} (),
and computes the score of each sampled labeling. Then, we can es-
timate the p-value of s by the fraction of samples with score smaller
than s. Simple stochastic simulation procedures suffer from a serious
drawback. To compute the p-value of arare score, we need to generate
a huge number of samples. Since we are interested in identifying rare
genes, this renders the simple stochastic sampling impractical for our
application.

Focusing our sampling in the “interesting” partsin {—, 4+}™?) can
potentially overcome this problem. How can such focus be achieved?
Theintuition isthat areasonably good division of negative and positive
labels above and below some threshold value existsin alabeling vector
u that hasasmall TNoM score. Thus such u is expected to score well
with other methods, as well. Sampling from the rare TNoM scores will
therefore enrich the occurrence of well scoring vectors.

To formalize this idea we start by rewriting the p-value term:

Prob (8(U,,) <s) = > Prob(S(U,,) < s|A;) - Prob (4,) (2)

where A, denotesthe event [TNoM (U,,,) = t].

Using the results of Ben-Dor et al, we can compute Prob(A;). To
estimate Prob (S(U,.,,) < s|A;) for different values of ¢ we sample
uniformly vectors from A; and then compute the fraction of samples
with score less than or equal to s. These estimated conditional proba
bilities, for different values of ¢, are combined using (2) to get an ap-
proximation of the p-values.

To apply this procedure, we need to sample from A;. Thisis done
recursively in a manner that follows the genera lines of the recursive
process for the cal culation of the size of setsin {—, +}™?) with partic-
ular TNoM score. The details of this procedure are omitted here.



3 Smooth Scoring M ethods

One of the shortcomings of the scores we examined in the previous
sections is that they only allow very simple queries on the gene's ex-
pression value: whether it is above or below a specified threshold. In
these methods, the prediction of the label is the same for expression
values that are dlightly above the threshold and for expression values
that are significantly above the threshold. As a consequence, the score
of a gene is determined only by the permutation of the class labels it
defines. This later property helps usin efficiently computing p-values
for genes' score.

Nonetheless, it seems more reasonable that the confidence in the
predictions made close to the threshold value should be lower than the
confidence in predictions made for genes that are significantly above
(or below) the threshold value. We now examine two scoring methods
that are based on thisintuition.

3.1 Logistic Prediction

Wewould likethat for expression val ues close to the decision threshold,
the probability of both labelswould be closeto 1/2. On the other hand,
for extreme expression values, our prediction should be confident. That
is, the conditional probability is either 1 or 0. One parametric family
that allowsfor representing such conditional probabilitiesisthelogistic
family:

flogit(+ | z : a,b) = logit(ax + b),

where logit (z) isthe logistic function

logit(z) = gt

In this family, the probability of + is an sigmoid function that
asymptotes to 0 and 1 at the extreme values of z. As we can easily
check, the value —b/a determines the point at which the probability of
both labels is equal. The sign of the a parameter determines whether
higher expression values are assigned higher probability of + or —. Fi-
nally, the magnitude of a determines the slope at the threshold point.



Thus, alarger value of a impliesanarrower region of uncertainty about
the label.

To score agene we need to find the parameters a and b that minimize
the logloss function. We do so by gradient based non-linear optimiza-
tion.* Although thereis no analytic solution for the best parameters, we
can efficiently compute the gradient of the logloss function with respect
to a and b and use (conjugate) gradient descent methods to optimize the
parameters.

Using logistic functions for representing conditional distributions
has theoretical roots that we briefly touch on now. Suppose that the
gene expression values X, are normally distributed around a mean that
depends on the type of tissue. Also suppose that the variance of the
gene expression values is the same for both types of tissues. Thus,

P(Xy | 1) ~ N(u,0%)

If we know the parameters of this distribution (x4, 1, and o) and also
the prior probability of tissue types, we can compute the probability of
atissue type given the expression value:

P(Xy | +)P(+) 1
P(+ | X,) = : = -
VTP, [P + PO [)P(5) — 14 KL T

Since P(X, | [) isaGaussian distribution, we can write the likelihood
ratio in an exponential form:

PXy|-)

— 5oy (2Xg (p— —pg)— (B2 —p3)) ©)
e 2
‘Z (‘ig | )

Thus, the conditional probability of the label + is logistic function of
the expression with parameter a = *5-#*. Aswe can see, when the
means are far a part in proportion to the variance, then there is a sharp
transition from high confidence in one label to high confidence in the
other. On the other hand, if the means are relatively close, then the
transition is gradual .

This well known derivation shows that in learning logistic condi-
tional distribution we are choosing from a parametric family that in-
cludes the ones we would have seen if we learned anormal distribution



for X, given each label. In this sense, we are learning from a class of
distributions that are as rich, or richer, than the Gaussian model. Note,
however, that the parameters that minimize the logloss do not allow us
to reconstruct a Gaussian model of the distributions P(X, | 1).

Also note that in learning the logistic function we do not assume
that the data is distributed in a Gaussian manner. In fact, the opti-
mal parameters are mainly determined by the expression levels at the
“boundary” between positively sampled examples and negative ones.
The exact expression values of at extreme tails of the distribution, that
is, the examples far away from the threshold, have negligible effect on
the best threshold value.

3.2 Gaussian Separation Score

The final score we evaluate is proposed by Slonim et al °. Their ap-
proach is motivated by the Gaussian model we discussed in the previ-
ous section. Given the data, they estimate the mean y; and standard
deviation o, of the expression values of ¢ among the samples labeled
[. (Note, that unlike our analysis above, there can be different vari-
ances for each tissue type.) Using this Gaussian approximation, they
attempt to measure to what extent the positive and negative classes are
separated. This scoreisdefined as

T
S S Lo Y i
ep(9) P

Theintuitionisthat the separation between the two group of expres-
sion values is proportional to distance between their mean (i.e., center
points). However, this distance has to be normalized by the standard
deviation of the groups. A large standard deviation implies that we ex-
pect to find pointsin the group far away from the mean value and thus
the separation would not be strong.

Such a score is expected to work well when the data is normally
distributed in each class of samples. In this case, the estimate of the
standard deviation takes in to account all the data points given to us.
On the other hand, if the datais not normally distributed, this score can
fail. For example, an asymmetric distribution of values in one of the
classes can skew the estimation of the variance a lead to misleading
score.
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4 Handling Missing Values

In actual gene expression datait is often the case that expression levels
for some genes are not reported for some samples. Thisistypically due
to technical measurement problems. The result is that the mixture of
labels that needs to be considered is dependent on the genein question.
Obviously, aTNoM score of 0 hasadifferent meaning for an = 20 and
p = 20 mixture then it does for n = 20 and p = 5 mixture. When se-
lecting asubset of genes asaclassification platform or when looking for
insight into the studied biological process we should therefore consider
the relevance of each gene in the context of the appropriate mixture.
Absolute score values do not provide a uniform figure of merit in this
context. We use p-values as a uniform platform for such comparisons,
as they do depend on the mixture that defines the model. This empha-
sizes the importance of statistical benchmarking of relevance scores.
The process is examplified in the analysis of the lymphomadata! be-
low.

5 Empirical Evaluation

5.1 Description of the Data Sets

We evaluate the gene selection methods on three data sets.

Colon cancer data set. A collection of 62 expression measure-
ments from colon biopsy samples reported by Alon et al. 2. Of these
samples, 38 are labeled “tumor” biopsies and 20 are labeled “normal”.
Gene expression levels in these 62 samples were measured using high
density oligonucleotide microarrays. Of the ~ 6000 genes detected in
these microarray, 2000 genes were selected based on the confidence in
the measured expression levels.

Leukemia data set. A collection of 72 expression measurements
reported by Golub et al. ” These samples are divided to two variants
of leukemiaz 25 samples of acute myeloid leukemia (AML) and 47
samples of acute lymphoblastic leukemia (ALL). The source of the
gene expression were taken from 63 bone marrow samples and 9 pe-
ripheral blood samples. Gene expression levels in these 72 samples
were measured using high density oligonucleotide microarrays that re-
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port on the expression levels of 7129 genes. The data is available at
http://ww. genonme. wi . m t. edu/ MPR

Lymphoma data set. A collection of 96 expression measurements
reported by Alizadeh et al. ! Of these, 46 samples of diffused large b-
cell lymphoma (DLBCL). The remaining 50 samples are of 8 types of
tissues. Alizadeh et al used clustering techniques to separate the DL -
BCL into two classes Germinal centre B-like DLBCL, and Activated
B-like DLBCL. In our experiment we used gene expression measure-
ments of 4096 genes. This data can be found at htt p: / /1| npp.
ni h. gov/ | ynphoma/ dat a/fi gurel/figurel. cdt.

In this data set we examined two labeling systems. In the firgt,
we want to distinguish DLBCL samples from the remaining samples.
In the second, we focus only on the 46 DLBCL samples and try to
distinguish thet two variants of DLBCL identified by Alizadeh et al.

5.2 Abundance of Highly Informative Genes

Consider a set of actual 1abeled gene expression data, such as the sets
studied by Alon et al? andin Golub et al 7. It is beneficial to give some
guantitative score to the abundance of highly informative genes, with
respect to the given labeling. A tool for doing thismay also be useful in
class discovery, where an un-labeled set of datais mined for a strongly
distinguishable class.

Figure 1 depicts a comparison between the expected number of
genes scoring better than a given p-value score and the actual number
found in the data. Aswe can see in al three data sets there is a large
number of abundant genes. In particular, in both the leukemia data set
and the DLBCL vs. rest classification problem there are many signifi-
cant genes even at p-values smaller than 10~8. We also see that number
of significant genes for TNoM and Info is roughly similar. Although
note that the significance is dlightly larger for Info.

5.3 Classification

One way of evaluating the usefulness of the genes selection method is
test its effect on classification accuracy. The intuition is that if we re-
strict ourselvesto “relevant” genes, then the ability to classify examples

12
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Figure 1: Comparison of the number of significant genesin actual dataset to expected

number under the null-hypothesis (random labels). The x-axis denotes p-value and

the y-axis the number of genes. The expected number of genesis the p-value multi-
pled by the number of genesin the data set.

should not deteriorate, and might even improve. ? In this work we use
the naive Bayesian classifier ¢ that evaluates the log-odd for the labels
using the formula:

P+ | )

P(+) | +)
log ———% =~ log——+ + log 971
P—Ta) P T 28 By, T

P(+ f(+1X,) P(+)
m>+z( )
We want to eval uate the accuracy of a classification method applied
to subsets of the data. In here we follow Ben-Dor et al and use leave
one out cross validation (LOOCYV) to estimate the prediction accuracy
of a classification method on new examples. This procedure iterates
on the samples in the data set. In each iteration it removes a single

sample and trains the classification procedure on the remaining sam-
ples. The trained classifier is then applied to the held-out sample and

log
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Figure 2: The effect of gene selection on classification. Each curve corresponds to
a gene selection method. In the top figures, the z-axis denotes the p-value threshold
for selection. In the bottom figures, the z-axis denotes the number of genes sel ected.
In al figures, the y-axis denotes the percentage of incorrect classifications based on
LOOCYV. The classification is performed by a naive Bayesian classifier (see text).
The gene selection methods are based on TNoM, Information score, Logistic score
and Gaussian Separation score. The latter two methodswere only applied when using
# of genes, since we did not compute p-values for genes.
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the predicted label is compared to the true label. The fraction of errors
when we repest this for all samplesis our estimate of the error rate of
the classification procedure.

When using gene selection, we need to pre-process the training data
to select genes. Then, the classification procedure is applied using the
training data restricted to the subset of selected genes. To evaluate per-
formance with gene selection, we have to be careful to jointly evaluate
both stages of the process: gene selection and classification. To do so,
we have to apply gene selection in each cross-validation trial on on the
training examples of that trial. Note, that since the training examples
are different in different cross validation trials, we expect the number
of selected genesto depend on thetrial.

After running this procedure for each sample, report are the fraction
of successful predictionsin all LOOCV trials. We run this LOOCV
procedure using severa p-value thresholds for both the TNoM score
and the Info score. For the logistic and Gaussian Separation score we
select genes by number. Thus, in each LOOCV iteration, we selected
the k-best scoring genes. Figure 2 show how the the performance of the
classification procedures changes with the p-val ue threshold/number of
selected genes and the scoring method.

These results show severa interesting trends. First, as we can see,
selecting relevant genes does, in general, improve classification perfor-
mance. Moreover, there isawide range of p-valuesin which we obtain
good classification accuracy. Thus, the processisnot too sensitiveto the
exact p-value employed. In amost all tested cases, setting the threshold
p-valueintherange 102 to 10 seemsto give good performance. For
the Leukemia data set, setting p-value of 10~?, we select, on average,
16 genes per LOOCYV trial with TNoM. For this threshold, the voting
classifier makes only 1 error out of 72 samples (%98.5 accuracy). We
get similar results on the DLBCL subtype classification problem with
p-value of 1073, In this case, the TNoM score selects, on average, 102
genesper LOOCV trid. It isinteresting to note that the performance of
TNoM and Info score on the leukemia data set degrades when we se-
lect afixed number of genes rather than by p-value. This examplify the
claim p-values provide is a more robust approach for selecting genes.
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6 Conclusion

In this paper, we examined the problem of identifying relevant genes
in labeled gene expression data. We described several approaches for
selecting genes and a genera procedure for efficiently estimating p-
values.

Our analysis shows that relevant genes are significantly abundant
in actual gene expression data. We also demonstrate that by restrict-
ing classification rules to examine these genes, performance improves,
often dramatically. We are currently extending our analysisto other la-
beled gene-expression data as it becomes available. We are currently
studying more direct approaches to the selection of informative sets of
genes. ldentifying sets of genesthat giveriseto efficient learned classi-
fiers might reveal previously unknown disease related genes and guide
further biological research.
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